Abstract

In freshwater species, metal toxicity is usually assessed through short-term exposures, hence limiting the practical usefulness of biomarkers for monitoring long-term impacts on wildlife populations. This study investigates the biological alterations elicited by chronic metallic exposures in Gammarus fossarum using multi-level biomarkers. In aquaria, gammarids were exposed for 10 weeks to field-realistic concentrations of Cd, Cu or Pb (0.25, 1.5 or 5.0 μg/L). At the individual level, behavioural traits (respiration, locomotion and feeding) were compared between naive and chronically-exposed gammarids. At the cellular level, enzymatic activities involved in digestion, moult and cell stress were monitored after 2, 6 and 10 weeks of exposure in males and females to consider the temporal feature of their responses. Results showed that the inhibitory effects of Cd and Pb on respiration and locomotion disappeared in chronically-exposed gammarids, reflecting acclimation to maintain these processes, unlike Cu. Chronic Cu- and Pb-elicited feeding inhibition was associated with the inhibitions of digestion enzymes. Chitobiase was inhibited by Cu in males and, by Cd and Pb in females, suggesting gender-dependent disturbances in moulting. In both genders, Cd generated cellular stress by stimulating acidic phosphatase and peroxidase activities. To conclude, such cellular impairments and alterations in individual performances are likely to disturb individual growth, population dynamics and litter decomposition in the long-term. Besides, obtaining biological responses, common to metals or specific to a metal or a gender, supports the development of biomarkers highlighting long-term impacts of metals on the health of organisms and their associated ecological functions in natural environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call