Abstract

In this study, two new distributions are developed by compounding Sine-Weibull and zero-truncated geometric distributions. The quantile and ordinary moments of the distributions are obtained. Plots of the hazard rate functions of the distributions show that the distributions exhibit nonmonotonic failure rates. Also, plots of the densities of the distributions show that they exhibit decreasing, skewed, and approximately symmetric shapes, among others. Mixture and nonmixture cure rate models based on these distributions are also developed. The estimators of the parameters of the cure rate models are shown to be consistent via simulation studies. Covariates are introduced into the cure rate models via the logit link function. Finally, the performance of the distributions and the cure rate and regression models is demonstrated using real datasets. The results show that the developed distributions can serve as alternatives to existing models for survival data analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.