Abstract

The present work was aimed to evaluate the effect of valproic acid(VPA), simvastatin (SIM)+VPA on Ti(titanium) rods osseointegration in ovariectomized(OVX) rats and further investigation of the possible mechanism. The MC3T3-E1 cells were co-cultured with VPA, SIM + VPA and induced to osteogenesis, and the cell viability, mineralization ability were observed by MTT and ALP staining, Alizarin Red staining and Western blotting. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into three groups: group OVX and VPA, SIM + VPA, and all the rats received Ti implants and animals belong to group VPA, SIM + VPA received valproic acid(300 mg/kg/day), valproic acid(300 mg/kg/day) plus SIM (25 mg/kg/day), respectively, treatment until death at 12 weeks. Micro-CT, histology, biomechanical testing, bone metabolism index and Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis were used to observe the therapeutic effect and explore the possible mechanism. Results shown that VPA decreased new bone formation around the surface of titanium rods and push-out force other than group OVX. Histology, Micro-CT and biochemical analysis results showed combined application of systemic VPA showed harmful effects than OVX group on bone formation in osteopenic rats, with the worse effects on CTX-1, P1NP and microarchitecture as well as biomechanical parameters by down-regulated gene expression of Runx2, OCN, Smad1, BMP-2 and OPG, while up-regulated RANKL. However, after SIM treatment, the above indicators were significantly improved. The present study suggests that systemic use of VPA may bring harm to the stability of titanium implants in osteoporosis, SIM can reverse the negative effect of VPA on the osseointegration of titanium rods in ovariectomized rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call