Abstract

A large coercive field (EC) and ultrahigh piezoelectricity are essential for ferroelectrics used in high-drive electromechanical applications. The discovery of relaxor-PbTiO3 crystals is a recent breakthrough; they currently afford the highest piezoelectricity, but usually with a low EC. Such performance deterioration occurs because high piezoelectricity is interlinked with an easy polarization rotation, subsequently favoring a dipole switch under small fields. Therefore, the search for ferroelectrics with both a large EC and ultrahigh piezoelectricity has become an imminent challenge. Herein, ternary Pb(Sc1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals are reported, wherein the dispersed local heterogeneity comprises abundant tetragonal phases, affording a EC of 8.2 kV/cm (greater than that of Pb(Mg1/3Nb2/3)O3–PbTiO3 by a factor of three) and ultrahigh piezoelectricity (d33 = 2630 pC/N; d15 = 490 pC/N). The observed EC enhancement is the largest reported for ultrahigh-piezoelectric materials, providing a simple, practical, and universal route for improving functionalities in ferroelectrics with an atomic-level understanding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.