Abstract
Simultaneous non-intrusive temperature and velocity measurements in flows are of high technological interest, e.g. to study the heat transfer in microfluidic environments. However, a measurement system that offers a low velocity uncertainty and micrometre spatial resolution as well as highly accurate temperature measurements in a single device has not been demonstrated so far. In this work, this problem is solved by combining a Laser Doppler Velocity Profile Sensor (LDV-PS) with Laser-Induced Fluorescence (LIF). Seeding particles are employed, that contain the fluorescent dyes uranine and rhodamine B. The multiple dye approach eliminates the influence of the droplet size. Relative velocity uncertainties of down to 0.4% and a temperature uncertainty of down to 0.24∘C with a spatial resolution of 10μm are achieved in a demonstration air flow experiment. The method has the potential to be optimised for different temperature ranges and uncertainty requirements, making it applicable on a wide range of thermal flows like fuel cells or microbioreactors. A better understanding of heat exchange processes can improve the energy efficiency of microfluidic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.