Abstract

A novel concept for mitigating switching noise propagation in high-speed printed circuit boards is proposed. By etching complementary split-ring resonators (CSRRs) on only one metallic layer of the printed circuit board, the electric field between the power planes can be suppressed. This behaviour is in contrast to the split-ring resonator that suppresses the magnetic field. Furthermore, by cascading CSRRs, concentrically, a wide suppression of switching noise covering a wide frequency band from sub-gigahertz to 12 GHz is achieved. The effect of the new power-plane topology on the signal integrity is also investigated and analysed. It is shown that the CSRR would result not only in significant suppression of switching noise but also in robust signal behaviour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call