Abstract

A solidified floating organic drop microextraction (SFODME) procedure was developed for the simultaneous extraction and preconcentration of Fe(III) and Al(III) from water samples. The method was based on the formation of cationic complexes between Fe(III) and Al(III) and 3,5,7,2′,4′-pentahydroxyflavone (morin) which were extracted into 1-undecanol as ion pairs with perchlorate ions. The absorbance of the extracted complexes was then measured in the wavelength range of 300–450nm. Finally, the concentration of each metal ion was determined by the use of the orthogonal signal correction–partial least squares (OSC–PLS) calibration method. Several experimental parameters that may be affected on the extraction process such as the type and volume of extraction solvent, pH of the aqueous solution, morin and perchlorate concentration and extraction time were optimized. Under the optimum conditions, Fe(III) and Al(III) were determined in the ranges of 0.83–27.00μgL−1 (R2=0.9985) and 1.00–32.00μgL−1 (R2=0.9979) of Fe(III) and Al(III), respectively. The relative standard deviations (n=6) at 12.80μgL−1 of Fe(III) and 17.00μgL−1 of Al(III) were 3.2% and 3.5%, respectively. An enhancement factors of 102 and 96 were obtained for Fe(III) and Al(III) ions, respectively. The procedure was successfully applied to determination of iron and aluminum in steam and water samples of thermal power plant; and the accuracy was assessed through the recovery experiments and independent analysis by electrothermal atomic absorption spectroscopy (ETAAS).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.