Abstract

We propose a sparse coefficient estimation and automated model selection procedure for autoregressive processes with heavy-tailed innovations based on penalized conditional maximum likelihood. Under mild moment conditions on the innovation processes, the penalized conditional maximum likelihood estimator satisfies a strong consistency, OP(N−1/2) consistency, and the oracle properties, where N is the sample size. We have the freedom in choosing penalty functions based on the weak conditions on them. Two penalty functions, least absolute shrinkage and selection operator and smoothly clipped average deviation, are compared. The proposed method provides a distribution-based penalized inference to AR models, which is especially useful when the other estimation methods fail or under perform for AR processes with heavy-tailed innovations [Feigin, Resnick. Pitfalls of fitting autoregressive models for heavy-tailed time series. Extremes. 1999;1:391–422]. A simulation study confirms our theoretical results. At the end, we apply our method to a historical price data of the US Industrial Production Index for consumer goods, and obtain very promising results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.