Abstract
The adaptive Least Absolute Shrinkage and Selection Operator (aLASSO) method is an algorithm for simultaneous model selection and parameter estimation with oracle properties. In this work we derive an adaptive LASSO type estimator for diffusion driven stochastic differential equation under weak conditions, specifically that the algorithm does not rely on high frequency properties.All conditional moments needed in our quasi likelihood function are computed from the Kolmogorov Backward equation. This means that a single equation is solved numerically, regardless of the number of observations. The LASSO problem is solved using the Alternating Direction Method of Multipliers (ADMM) method.Our simulations show that the resulting algorithm is able to find the correct model with high probability while obtaining unbiased parameter estimates when evaluated on two qualitatively different data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.