Abstract

In additive models the problem of variable selection is strongly linked to the choice of the amount of smoothing used for components that represent metrical variables. Many software packages use separate toolsto solve the different tasks of variable selection and smoothing parameter choice. The combinationof these tools often leads to inappropriate results. In this paper we propose a simultaneous choice of variables and smoothing parameters based on genetic algorithms. Common genetic algorithms have to be modified since inclusion of variables and smoothing have to be coded separately but are linked in the search for optimal solutions. The basic tool for fitting the additive model is the penalized expansion in B-splines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.