Abstract
Spline smoothing in non- or semiparametric regression models is usually based on the roughness penalty approach. For regression with normal errors, the spline smoother also has a Bayesian justification: Placing a smoothness prior over the regression function, it is the mean of the posterior given the data. For non-normal regression this equivalence is lost, but the spline smoother can still be viewed as the posterior mode. In this paper, we provide a full Bayesian approach to spline-type smoothing. The focus is on generalized additive models, however the models can be extended to other non-normal regression models. Our approach uses Markov Chain Monte Carlo methods to simulate samples from the posterior. Thus it is possible to estimate characteristics like the mean, median, moments, and quantiles of the posterior, or interesting functionals of the regression function. Also, this provides an alternative for the choice of smoothing parameters. For comparison, our approach is applied to real-data examples analyzed previously by the roughness penalty approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.