Abstract

To evaluate the nanoparticle (NP) toxicity, much efforts have been devoted for developing methods to accurately disperse NPs into aqueous suspensions prior to in vitro toxicological studies. As NP toxicity is strongly dependent on their physicochemical properties, NP characterization is a key step for any in vitro toxicological study. This study demonstrates that the static multiple light scattering (SMLS) technique allows for the simultaneous screening of the NP size, agglomeration state, stability and dosimetry in biological media. Batch dispersions of TiO2 P25 NPs in water with various bovine serum albumin (BSA) mass fractions (from 0% to 0.5%) and dilutions of these dispersions into cell culture media were characterized with SMLS. In the batch dispersions, TiO2 NPs are stable and well dispersed for BSA mass fraction lower than 0.2% while agglomeration and rapid settling is observed for higher BSA mass fractions. Paradoxically, when diluted in cell culture media, TiO2 NPs are well dispersed and stable for BSA mass fractions higher than 0.2%. The TiO2 NP dosimetry of these dilutions was evaluated experimentally with SMLS and confronted with numerical approaches. The TiO2 NP bottom concentration evolves far more slowly in the case of the higher BSA mass fraction. Such measurements give valuable insights on the NP fate and transport in biological media to obtain in fine reliable size and dose-cytotoxicity responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.