Abstract

This paper proposes two-stage O3 oxidation combined with Ca(OH)2 for simultaneous removal of NOx and SO2 (NOx: Nitrogen oxides including NO, NO2 and N2O5). In two-stage oxidation, NO was first oxidized to NO2 in an oxidation tube, and NO2 was further oxidized into N2O5 in the spray tower. NOx and SO2 were simultaneously removed in the spray tower. This method can effectively reduce the extra waste of O3 caused by the decomposition of N2O5, especially at high temperature. Effects of various factors on denitrification efficiency were investigated. The results showed that the NOx removal efficiency decreased and O3 extra consumption ratio increased with the increase of oxidation temperature or oxidation reaction time. When the O3/NO molar ratio was 1.8, one-stage O3 oxidation at 150 oC extra wasted 33.3% of O3. With the increase of O3 concentration at site 2, the NOx removal efficiency first increased and then stabilized. Compared with the one-stage O3 oxidation-absorption, the two-stage oxidation-absorption improved NOx removal efficiency from 62.5% to 89%. In addition, the increase of CaSO3 slurry concentration had little effect on the denitrification efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call