Abstract

Anthropogenic NOx, SO2 and CO2 emission from the fossil-fuel-fired power plants has aroused growing attention. This study investigated the removal performance of CO2, SO2 and NOx in flue gas as well as conversion efficiency of nitric- and sulfur-compounds in liquid phase in a biofilter. In order to develop the potential of the biofilter, simulative industry wastewater was employed as the spray solution. The satisfactory flue gas removal performance (75.23% CO2, 100% SO2 and 82.81% NO) were achieved under the optimal operating conditions of biofilter: initial solution pH of 9 and liquid-gas ratio (L/G) of 3. The gas film mass transfer coefficients (kGa) results showed that the resistance of gas mass transfer was decreased with increasing the pH value and L/G ratio, respectively. The final transformation product of NO was mostly N2 while about 78% SO2 was converted to elemental sulfur. The microbial community analysis results showed that the relative abundance of bacteria with denitrification capacity was increased by 3.05% which might have contributed to the conversion of NO intermediates products in present study. Collectively, this biofilter system achieve a better flue gas removal performance via the proper operation system, which provides an economic feasible strategy of flue gas purification and increases potential for industrial application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call