Abstract

Uranium containing radioactive wastewater is seriously hazardous to the natural environment if it is being discharged directly. Herein, nano-flake like Fe loaded sludge carbon (Fe-SC) is synthesized by carbothermal process from Fe-rich sludge waste and applied in the immobilization of uranium in aqueous. Batch isotherm and kinetic adsorption experiments are adopted to investigate the adsorption behavior of Fe-SC to uranium in aqueous. XPS analyses were conducted to evaluate the immobilized mechanism. It was found that the carbonized temperature played significant role in the characteristics and immobilization ability of the resulted Fe-SC. The Fe-SC-800 carbonized at 800°C takes more advantageous ability in immobilization of uranium from aqueous than the commercial available AC and powder zero valent iron. The adsorption behavior could be fitted well with the Langmuir isotherm adsorption model and pseudo-second order model. The equilibrium adsorption amount and rate for Fe-SC-800 is high to 148.99mgg⿿1 and 0.015gmg⿿1min⿿1, respectively. Both reductive precipitation and physical adsorption are the main mechanisms of immobilization of uranium from aqueous by Fe-SC-800.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.