Abstract
A high-throughput method for simultaneous qualitative and quantitative analysis of 21 mycotoxins in Radix Paeoniae Alba (RPA) was developed by coupling the modified QuEChERS method with ultra-high performance liquid chromatography quadrupole linear ion trap mass spectrometry (UHPLC-QqLIT-MS). The 21 mycotoxins were extracted and cleaned up using QuEChERS-based procedure, then further separated on a C18 column and detected by a hybrid triple quadrupole linear ion trap mass spectrometer equipped with electrospray ionization source in the multiple reaction monitoring-information dependent acquisition-enhanced product ion (MRM-IDA-EPI) mode. Under this technique, 13 mycotoxins were detected using acetonitrile and water containing 0.1% formic acid as the mobile phase in positive mode while the other 8 mycotoxins were detected using acetonitrile and water containing 0.1% ammonia as the mobile phase in negative mode. The calibration curves of all analytes showed good linearity (r(2)>0.995) within test ranges. The limits of detection and quantification ranged from 0.031 to 5.4μg/kg and 0.20 to 22μg/kg, respectively. Additionally, recoveries were all above 75.3% with relative standard deviations within 15%. The method proposed herein with significant advantages including simple pretreatment, rapid determination as well as high sensitivity, accuracy and throughput would be a preferred candidate for the determination and quantification of multi-class mycotoxin contaminants in real samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.