Abstract

The objective of this study was to develop, optimize, and validate a method for the determination and quantification of 17 hypoglycemic drugs in fingerprints using ultra-high-performance liquid chromatography/tandem hybrid triple quadrupole linear ion trap mass spectrometry (UHPLC/QTRAP-MS/MS). We also aimed to apply the present method to the fingerprints collected from patients with hyperglycemia. The scheduled multiple reaction monitoring information-dependent acquisition-enhanced product ion (SMRM-IDA-EPI) scanning mode was utilized. The chromatographic system consisted of an Acquity UHPLC® BEH C18 column (3.0 × 100 mm, 1.7μm) and a mobile phase of 0.01% (v/v) formic acid in water and methanol. Analytes were extracted via a precipitation protein procedure. The method was validated in accordance with the US Food and Drug Administration (FDA) guidance and applied to the analysis of fingerprint deposits from subjects who had taken the drugs. The limits of detection (LODs) and the lower limits of quantification (LLOQs) of 17 hypoglycemic drugs were 0.001 to 0.020 and 0.002 to 0.050 ng/fingerprint, respectively. The correlation coefficients (r) for the calibration curves were > 0.99 in the range of 0.050-50.000 ng/fingerprint. The matrix effect and recovery of 17 hypoglycemic drugs at three concentrations ranged from 81.1 to 117.3% and 80.0 to 109.6%, respectively. The validation data (intra- and inter-day combined) for accuracy ranged from 85.5 to 117.2%, the CV (%) data were ≤19.7%. All analytes were found to be stable stored in the autosampler (4°C) for 24 h. This validated method was successfully applied to detect hypoglycemic drugs in fingerprints from patients with hyperglycemia. A quantification method for hypoglycemic drugs in fingerprints was developed, optimized, and validated. This sensitive method could be used for drug monitoring and providing reference information in forensic investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.