Abstract

The self-consistent equations for the order parameters of Bose–Einstein condensation (BEC) of molecules and Bardeen–Cooper–Schrieffer (BCS) condensation of atoms in a Fermi gas of atoms with an attractive two-body interaction between atoms have been derived within the Hartree–Fock–Bogoliubov approximation from the path integral representation of the grand partition function. We have found that the order parameters for BEC and BCS are proportional to each other, which implies that BEC and BCS onsets simultaneously. We have also found that the common critical temperature of BEC and BCS increases as the average number of molecules increases and that the atom-molecule coupling enhances the common critical temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.