Abstract

Moving-bed biofilm reactor (MBBR) is a well-established technology for simultaneous nitrification and denitrification (SND). In MBBR, biofilm development and pollutant removal performance are strictly governed by the physico-chemical properties of the carriers. In this study, novel surface-modified carriers with enhanced hydrophilicity (surface contact angle of 60.2 ± 2.3°) and positively-charged surfaces (+11.7 ± 1.1 mV, pH 7.0) had been prepared successfully via polymer blending, and they had also been implemented in SND system for the treatment of real domestic wastewater. Results showed that accelerated startup of SND with more biomass on the carriers was observed in MBBR system filled with surface-modified carriers. At low DO level (0.6–0.8 mg L−1) and low C/N ratio (≤5), highly efficient organics removal and SND performance could be achieved with COD removal, TN removal and SND efficiencies of 79.3–85.7%, 62.0–75.9% and 58.5–71.8%, respectively. The efficient performance of SND in MBBR system filled with surface-modified carriers was mainly attributed to the coexistence of enriched mixtrophic nitrifiers and denitrifiers like autotrophic nitrifers (Nitrosomonas, Nitrospira, Nitrobacter), heterotrophic nitrifers (Rudaea), aerobicdenitrifiers (Dokdonella, Terrimonas), anoxic denitrifiers (Gemmobacter, Ottowia, Methyloversatilis, Thermomonas) and N2O producer (Mesorhizobium).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.