Abstract

Previous studies have used parallel imaging (PI) techniques to decrease spine magnetic resonance imaging (MRI) protocol acquisition times. Recently developed MRI sequences allow even faster acquisitions. Our purpose was to develop a lumbar spine MRI protocol using PI with GRAPPA (generalized autocalibrating partially parallel acquisition) and a simultaneous multislice (SMS)-based sequence and to evaluate its diagnostic performance compared to a standard lumbar spine MRI protocol. Ten patients were scanned in a 3-Tesla scanner (MAGNETOM Skyra, Siemens Healthcare). Each patient was imaged using a standard protocol and an optimized fast protocol acquiring the same contrasts and planes. The fast protocol included sagittal T1, T2, and fat suppressed T2 sequences accelerated with GRAPPA and an SMS-based axial T2-weighted sequence using a high-density spine coil (Siemens MR, 30 channel spine). Two blinded neuroradiologists independently assessed image quality and diagnostic accuracy for clinically relevant imaging findings. The fast protocol acquisition time was 5:28 minutes, compared with 16:30 minutes for the standard protocol. Both protocols had a similar performance for definition of anatomical structures, diagnostic quality, and identification of clinically relevant imaging findings. There were more artifacts in the SMS Turbo Spin Echo (P = .014) sequence without compromising diagnostic performance. Artifacts in the remaining non-SMS sequences were similar in both protocols (P > .180). The sensitivity, specificity, and accuracy of the 5-minute protocol were 92.3%, 100.0%, and 99.6%, respectively, for the clinically relevant findings (P = 1.0, interrater agreement .57). A 5-minute SMS-based MRI protocol for lumbar spine imaging is feasible and can be achieved without significant impact in the overall diagnostic quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call