Abstract

A theoretical model has been developed to describe simultaneous momentum, heat, and mass transfer phenomena in disordered porous materials. The model can be applied to a wide variety of engineering-related fields, e.g., the drying and/or burnout of processing aids in the colloidal processing of advanced ceramic materials. Simulations based on the model predict the local temperature and mass distribution of the porous body as a function of time and position. This information can then be coupled with known mechanical properties of the body to predict internal stresses during removal of liquid from the body. The theoretical model has potential application to many engineering problems, e.g., the optimization of processing conditions in the design of an improved binder removal process. The model is evaluated using experimental data on binder removal from a ceramic green compact consisting of submicron α-Al 2O 3 powder dispersed in a paraffin wax; the agreement between the simulated and experimental results is good.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.