Abstract
The simultaneous heat and mass transfer between fluid phase and seeds having a mucilaginous coating was studied during packed bed drying. To describe the process, a two-phase model approach was employed, in which the effects of bed shrinkage and nonconstant physical properties were considered. The model took into account bed contraction by employing moving coordinates. Equations relating shrinkage and structural parameters of the packed bed with moisture content, required in the drying model, were developed from experimental results in thick-layer bed drying. The model verification was based on a comparison between experimental and predicted data on moisture content and temperature along the bed. Parametric studies showed that the application of correlations capable of incorporating changes in bed properties gives better data simulation. By experimental-theoretical analysis, the importance of shrinkage for a more accurate interpretation of heat and mass transfer phenomena in the drying of porous media composed of mucilaginous seeds is corroborated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.