Abstract

Coagulation with or without pre-oxidation are important drinking water treatment processes. However, the efficacy of these processes in mitigating water toxicity remains unknown. To further improve drinking water safety, we employed water from the Pearl River Delta region of southern China to investigate a treatment approach consisting of coagulation with or without pre-oxidation to simultaneously modulate health-relevant cytotoxicity to CHO cells, on top of the conventional foci of turbidity and dissolved organic carbon (DOC) during water treatment. Three coagulants (two aluminum-based and one iron-based salts) and three pre-oxidants (ozone, permanganate, and peroxymonosulfate) were studied. For coagulation without pre-oxidation, intermediate coagulant doses and pH reached optimum cytotoxicity to CHO cells, turbidity, and DOC control simultaneously. Introducing oxidants reduced cytotoxicity to CHO cells significantly, enhanced by increasing oxidant concentrations and pre-oxidation duration. The cytotoxicity to CHO cells mitigation capabilities of three pre-oxidants were: ozone > peroxymonosulfate > potassium permanganate. Modulation of water cytotoxicity to CHO cells was mostly attributable to controlling DOC (specifically humic-acid like substances, tyrosine, tryptophan). However, the addition of pre-oxidants led to significant shifts in water cytotoxicity to CHO cells forcing drivers, rendering humic-acid like substances the sole decisive cytotoxicity-inducing fluorophores. For the first time, ‘sweet spots’ were identified to simultaneously monitor cytotoxicity to CHO cells alongside turbidity and DOC. These methods better modulate water cytotoxicity to CHO cells without sacrificing conventional water treatment goals while shedding light onto the mechanisms behind.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.