Abstract

The Pearl River Delta (PRD) region in southern China has suffered heavily from acid rain in the last 10 years due to the anthropogenic emission of sulfur dioxide and nitrogen dioxide. Several measurement-based studies about this issue have been conducted to analyze the chemical composition of precipitation in this area. However, no detailed, high resolution numerical simulation regarding this topic has ever been done in this region. In this study, the WRF-SMOKE-CMAQ system was applied to simulate the wet deposition of acid substances (SO42− and NO3−) in the PRD region from 2009 to 2011 with a resolution of 3 km. The simulation output agreed well with the observation data. Our results showed that Guangzhou was the city most affected by acid rain in this region. The ratio of non-sea-salt sulfate to nitrate indicated that the acid rain in this region belonged to the sulfate-nitrate mixed type. The source apportionment result suggests that point source and super regional source are the ones that contribute the pollutants most in the rain water over PRD Region. The sulfate and nitrate input to some reservoirs via wet deposition was also estimated based on the model simulation. Our results suggest that further cross-city cooperation and emission reduction are needed to further curb acid rain in this region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call