Abstract

AbstractZr based metallosilicalites, especially Zr‐ß, is promising catalyst for the conversion of ethanol to 1,3‐butadiene, which is considered to be a sustainable alternative to petroleum steam cracking. However it is suffering from deactivation derived from coking and unsatisfied catalytic activity derived from deficient Lewis acidity. For these issues, a dissolution‐recrystallization process through tetraethyl ammonium hydroxide treatment (TEAOH) for enhancing porosity and Lewis acidity of Zr‐ß zeolite was developed in this study. A balance of dissolution and recrystallization existed in this process, which was produced by OH− etching and templating of TEA+ ions, creating additional mesoporosity. Zirconium active sites maintained tetrahedral coordination, while the Lewis acidity was enhanced by creating higher proportion open sites in framework. The recrystallized Zr‐ß exhibited higher catalytic activity and stability in the conversion of ethanol‐acetaldehyde to butadiene due to the compromise of microporosity and mesoporosity, as well as the appropriate enhancement of Lewis acidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.