Abstract
We present a simple method for simultaneous measurement of thermo-optic and stress-optic coefficients of polymer thin films by measuring the film refractive indices as a function of temperature (dn/dT). Usually, such dn/dT value is considered as the thermo-optic coefficient. However, in the thin film systems, the measured dn/dT values result from both the thermo-optic and stress-optic effects. To demonstrate the stress-induced effects, the dn/dT values have been investigated for two different polymers: benzocyclobutene (high film stress) and epoxy 3505 (negligible film stress), using a prism coupler technique. The finite element method has been used so as to predict the stresses in the polymer film and, by combining them with the experimental dn/dT values, the individual thermo-optic and stress-optic coefficients have been determined. We found that the obtained thermo-optic coefficient is significantly different than the measured dn/dT values. The method is generic in nature and can thus be applied to a wide range of polymer waveguide materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.