Abstract

When operated as a standalone analytical device, traditional drift tube ion mobility spectrometry (IMS) experiments require high-speed, high-gain transimpedance amplifiers to record ion separations with sufficient resolution. Recent developments in the fabrication of charge-sensitive cameras (e.g., IonCCD) have provided key insights for ion beam profiling in mass spectrometry and even served as detectors for miniature magnetic sector instruments. Unfortunately, these platforms have comparatively slow integration times (multiple ms), which largely precludes their use for recording ion mobility spectra, where sampling rates into the 10s of kHz are generally required. As a result, experiments that simultaneously probe the longitudinal and transverse mobility of an injected species using an array detector have not been reported. To address this duty-cycle mismatch, a frequency encoding strategy is used to evaluate ion swarm characteristics, while directly capturing ion mobility information using the Fourier transform. This apparatus described allows the ion beam to be profiled over the full course of the experiment and establishes the foundation to examine axial and longitudinal drift velocities simultaneously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.