Abstract

Abstract—The incorporation of an orally administered mixture of [9,10‐3H2joleic acid and [1‐14C]linoleic acid into the brain and spinal cord lipids was maximal after 24 h compared with 4 h for extraneural tissue. In the latter, both acids were utilized equally well for triglyceride biosynthesis, but linoleate entered phosphatidylcholine more rapidly than oleate. Oleic acid was preferentially incorporated into newly synthesized cholesterol esters although 4 h after dosing most cholesterol esters present in serum were formed preferentially from linoleate presumably by the action of lecithin‐cholesterol acyl transferase.In neural tissue, a considerable amount of [1‐14C]linoleate was metabolized to higher polyunsaturated fatty acids, whereas in the case of oleate, 90 per cent of the tritium activity remained in monoenic acids at all time periods studied. Both acids were initially incorporated most rapidly into the lecithin fraction of brain and spinal cord, but after 7 days diacyl phosphatidylethanolamine had the highest specific activity.These data are consistent with the view that the uptake of labelled fatty acids by the brain takes place principally as free acids but that some uptake of esterified forms, probably largely as phosphatidylcholine, also occurs. The low linoleate content of the brain and probably also of cerebrospinal fluid cannot be explained on the basis of a selective restriction on the uptake of this lipid from plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call