Abstract

We propose a method that solves the problem of the independent determination of the indium and nitrogen concentrations in a strained quaternary InGaAsN superlattice. The method is experimentally based on the simultaneous measurement: (i) of the tetragonal lattice distortion of the unit cell from high resolution micrographs and (ii) of the intensity of the chemically sensitive (002) reflection from dark field images. As an example, we evaluate InGaAsN quantum wells with a nominal N concentration of 1.7% and with In concentrations of 10%, 20%, or 35%. We reveal local fluctuations of the In and N concentrations over distances down to 4 nm with a sensitivity of 0.1% for N and 1% for In fluctuations in this distance range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call