Abstract

Fluindapyr and penthiopyrad are two new succinate-dehydrogenase-inhibitor fungicides both employed as racemic mixtures of enantiomers to control various fungal pathogens. In the present work, a robust and highly-sensitive method for simultaneous determination of fluindapyr and penthiopyrad enantiomers in plant-origin foods (cereals, fruits and vegetables) was developed using UPLC-MS/MS combined with a chiral stationary phase. Rapid baseline chiral separation of four stereoisomers of fluindapyr and penthiopyrad was obtained within 4.2 min on chiral MX(2)-RH column under reversed-phase conditions (with the eluent of acetonitrile/0.1% formic acid in water =70/30 (V:V) and column temperature maintained at 30 °C). The plant-origin samples were extracted quickly with acetonitrile and purified with multi-walled carbon nanotubes. Excellent linearity for the target analytes was observed in the concentration ranging from 1 to 250 µg/L with regression coefficient no less than 0.9967. The mean recoveries of fluindapyr and penthiopyrad enantiomers from six matrices were 77.1–107.2%, with all relative standard deviations values lower than 9.1%. The limit of quantification of four stereoisomers of two target chiral fungicides was 5 µg/kg. The analysis of real samples reveal that the developed method is suitable for the simultaneous chiral determination of fluindapyr and penthiopyrad residues in cereals, fruits and vegetables samples at enantiomeric level and can support their further investigation on enantioselective environmental behaviors and residue surveillance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.