Abstract
The combination of secondary neutral mass spectrometry (SNMS) and resonance ionization spectroscopy (RIS) has been shown to be a powerful tool for the detection of low levels of elemental impurities in solids. Drawbacks of the technique have been the laser-repetition-rate-limited, low duty cycle of the analysis and the fact that RIS schemes are limited to determinations of a single element. These problems have been addressed as part of an ongoing program to explore the usefulness of RIS/SNMS instruments for the analysis of naturally occurring samples. Efficient two-color, two-photon (1+1) resonance ionization schemes were identified for Mo and for four platinum-group elements (Ru, Os, Ir, and Re). Careful selection of the ionization schemes allowed Mo or Ru to be measured simultaneously with Re, Os, or Ir, using two tunable dye lasers and an XeCl excimer laser. Resonance frequencies could be switched easily under computer control, so that all five elements can be rapidly analyzed. In situ measurements of these elements in metal grains from five meteorites were conducted. From the analyses, estimates of the precision and the detection limit of the instrument were made. The trade-off between lower detection limits and rapid multielement RIS analyses is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.