Abstract

The simultaneous determination of 6-methoxy-2-naphthylacetic acid (6MNA) and diflunisal in serum samples using the combination of matrix isopotential synchronous fluorescence (MISF) and first derivative technique is proposed. 6MNA and diflunisal exhibit overlapped spectra and serum produces background fluorescence that precludes the direct determination of these anti-inflammatory drugs by conventional fluorimetry. This method provides good analytical results for determination of compounds in samples with unknown background fluorescence. The method was applied for the simultaneous determination of 6MNA and diflunisal in serum samples at concentrations between 20–200 and 100–1000 ng mL −1, respectively, by means of absolute values of first derivative of synchronous scan at 247.9/364.0 and 262.6/392.4 nm for 6MNA and diflunisal, respectively. In order to obtain maximum sensitivity and adequate selectivity, factors affecting fluorescence intensity were studied. As a result, the analyses were performed in water at a pH of 7.2, adjusted by using sodium dihydrogen phosphate/hydrogen phosphate (0.1 M) as a buffer solution. Serum samples were diluted 200 times. Analytical parameters of the proposed method were calculated according to the error propagation theory. The limit of detection calculated according to Clayton was 15.8 and 63.0 ng mL −1 for 6MNA and diflunisal, respectively. The sensitivity, repeatability and reproducibility achieved with the proposed method were adequate for the determination of these anti-inflammatory agents in serum samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.