Abstract
A sensitive and high-efficiency method for simultaneous detection of pyraclostrobin, prochloraz, and its metabolite in apple and soil based on QuEChERS pretreatment combined with rapid resolution liquid chromatography tandem mass spectrometry was established and validated. The limits of quantification of three compounds in two matrixes were 0.005 mg kg−1. The average recoveries of pyraclostrobin, prochloraz, and 2,4,6-trichlorophenol in soil matrix were in the ranges of 87–105%, 86–95%, and 90–96%, respectively, with all the relative standard deviations (RSDs) of < 9.6%, while recoveries were 89–93%, 83–97%, and 89–101% in apple with the RSDs of < 6.5% at three spiking levels. For verify the applicability of this method, the real samples from three representative locations were detected. The degradation behaviors and residue distributions of pyraclostrobin and prochloraz and its metabolite in apple ecosystem were investigated. The field experiment data showed that the dissipation of pyraclostrobin and prochloraz in apple and soil followed pseudo-first-order kinetic models. The half-lives of pyraclostrobin in soil and apple were 8.6–19.8 and 7.9–15.1 days, while prochloraz were 8.9–21 and 5.8–12.4 days. The highest terminal residue of total prochloraz and pyraclostrobin in apple, after spraying three to four times with the interval of 28 days, was far below the maximum residue limits recommended by China. This research could provide guidance on a reasonable usage of prochloraz and pyraclostrobin in apple orchard.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have