Abstract
A new, reversed-phase HPLC (RP-HPLC) method was developed for the simultaneous determination of the dipeptidyl-peptidase-IV-inhibitor antidiabetic drug vildagliptin (VIL) enantiomeric impurity and four other achiral related impurities. An initial screening was performed on five polysaccharide-type chiral stationary phases (Lux Amylose-1, Lux Amylose-2, Lux-Cellulose-1, Lux-Cellulose-2, Lux-Cellulose-3) in polar organic mode with methanol, ethanol, 2-propanol, or acetonitrile containing 0,1% diethylamine as mobile phase to identify the best conditions for the separation of VIL enantiomers. Lux-Cellulose-2 column was found to provide the best chiral resolution for VIL enantiomers. Further experiments were conducted using different aqueous-organic mobile phases to achieve the simultaneous chiral-achiral separation of the selected compounds. Experimental design-based optimization was performed by using a face-centered central composite design. The optimal separation conditions (Lux Cellulose-2 stationary phase, 45 °C, mobile phase consisting of methanol/water/diethylamine 80:20:0.2 (v/v/v), and 0.45 mL/min flow rate) provided baseline separation for all 6 compounds. The optimized method was validated according to the ICH guideline and proved to be reliable, specific, linear, precise, and accurate for the determination of at least 0.1% for all impurities in VIL samples. The validated method was applied for determinations from a commercially available drug formulation and proved to be suitable for routine quality control of both enantiomeric and organic impurities of VIL.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have