Abstract

In this paper, we describe a simple method for performing multifrequency eddy current characterization of free-standing uniform-thickness metallic foils using a forked inductive coil arrangement. The method involves measuring the mutual inductance between two coils when a foil is present between the coils, and when it is not present; the ratio of these mutual inductances is compared with an analytical solution, and foil conductivity, thickness, and sheet resistance are simultaneously estimated using numerical inversion and least-squares fitting. This method was used to characterize 34 non-ferrous metallic samples with thicknesses between 50 and 640 μm and with conductivities between 0.8 × 107 and 5.8 × 107 S/m. The estimated thicknesses from eddy current characterization agreed well with those measured using confocal optical techniques; the two approaches agreed to within 1 μm for samples that were thinner than 200 μm, and to within 0.5% for samples that had a thickness of 200 μm or greater. The estimated conductivities from eddy current characterization were in close agreement with expected values, given knowledge of the materials used. A particular strength of this approach is that the instrumentation needed is broadly available in research and development laboratories and the associated fixturing is easy to manufacture and assemble. A calibration procedure is described that can be used to reduce errors from geometric uncertainties. This calibration requires a sample that has only a known conductivity or thickness; both do not need to be known. The method described herein is likely extensible to conductivities and thickness well outside the ranges measured as part of this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call