Abstract

One of the major processes that occur as a result of radical-induced oxidative stress is lipid peroxidation (LPO). Degradation of lipid peroxides results in various products, including a variety of carbonyl compounds. In the present study eight different lipid degradation products, i.e., formaldehyde, acetaldehyde, acetone, propanal, butanal, pentanal, hexanal and malondialdehyde were identified and measured simultaneously and quantitatively in rat urine after derivatization with O-(2,3,4,5,6-pentafluorbenzyl)hydroxylamine hydrochloride, extraction with heptane and using gas chromatography-electron-capture detection (GC-ECD). The identity of the respective oximes in urine was confirmed by gas chromatography-negative ion chemical ionization mass spectrometry (GC-NCI-MS). Simultaneously measured standard curves were linear for all oxime-products and the detection limits were between 39.0 +/- 5.3 (n=9) and 500 +/- 23 (n=9) fmol per microl injected sample. Recoveries of all products from urine or water were 73.0 +/- 5.2% and higher. In urine of CCl4-treated rats an increase in all eight lipid degradation products in urine was found 24 h following exposure. ACON showed the most distinct increase, followed by PROPA, BUTA and MDA. It is concluded that the rapid, selective and sensitive analytical method based on GC-ECD presented here is well suited for routine measurement of eight different lipid degradation products. These products appear to be useful as non-invasive biomarkers for in vivo oxidative stress induced in rats by CCl4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.