Abstract

The aging characteristic components of oil-paper insulation reflect the aging status of the power equipment. In this study, we designed a novel microfluidic chip capable of automatic and rapid extraction of aging components from insulating oil. Combined with Raman spectroscopy technology, it enables simultaneous detection of various aging components. By optimizing the microfluidic chip structural and adopting an optical window encapsulation, it eliminates interference from the Polydimethylsiloxane (PDMS). Measurements and analyses were carried out on multiple oil samples containing three aging products (furfural, acetone, and methanol). The results indicate that this novel microfluidic chip facilitates simultaneous detection of multiple components, significantly improving the detection sensitivity of complex oil. The detection limits for furfural, acetone, and methanol in insulating oil are 0.43 mg/L, 1.04 mg/L, and 2.31 mg/L, respectively. This provides a new approach for the online detection of oil-paper insulation equipment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call