Abstract
Clinopodii herba is a folk herbal medicine for treatments of hemorrhagic disorders. However, there is not even a quantitative standard for clinopodii herba deposited in the Chinese Pharmacopoeia. The development of a strategy for rapid and efficient extraction and simultaneous detection of multiple components in clinopodii herba is therefore of great value for its quality evaluation. Here, a variable wavelength strategy was firstly applied to quantity multiple components by segmental monitoring by UHPLC with diode array detector following ultrasound-assisted extraction. The parameters of ultrasound-assisted extraction were optimized using single factor optimization experiments and response surface methodology by a Box–Behnken design combined with overall desirability. Subsequently, a rapid, efficient, and sensitive method was applied for simultaneous determination of eleven compounds, which represented the major and main types of components in clinopodii herba. Moreover, the performance of the validated method was successfully applied for the quality control of various batches of clinopodii herba and provided sufficient supporting data for the optimum harvest time. The Box-Behnken-optimized ultrasound-assisted extraction coupled with variable wavelength detection strategy established in this work not only improves the quality control of clinopodii herba, but also serves as a powerful approach that can be extended to quality evaluation of other traditional Chinese medicines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.