Abstract

In this paper, a reagent-free simultaneous and direct detection method of three analytes in human blood based on Fourier-transform Raman (FT-Raman) spectroscopy with 1064 nm laser radiation was proposed for the first time. A total of 161 human blood samples were characterized by FT-Raman spectroscopy under the excitation laser source of 1064 nm. In order to achieve a robust regression model, the Nonlinear Iterative Partial Least Squares (NIPALS) with orthogonal signal correction (OSC) algorithm and sample set partition based on a joint x-y distance (SPXY) is used to establish multivariate calibration models. The root means square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP), correlation coefficients (R2) and ratio of performance to deviation (RPD) were 0.34255 mg/dL, 0.3662 mg/dL, 0.99982 and 56.3524 for glucose, 0.33656 mg/dL, 0.75736 mg/dL, 0.99967 and 34.9169 for total cholesterol (TC), and 0.29956 mg/dL, 0.27469 mg/dL, 0.99998 and 173.5098 for triglycerides (TG), respectively. The analysis results showed that the proposed method could be able to accurately predict the concentration of glucose, TC and TG in blood. This method can instantaneous multi-component detection on whole blood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call