Abstract

We propose an approach for cooling both an artificial atom (e.g., a flux qubit) and its neighboring quantum system, the latter modeled by either a quantum two-level system or a quantum resonator. The flux qubit is cooled by manipulating its states, following an inverse process of state population inversion, and then the qubit is switched on to resonantly interact with the neighboring quantum system. By repeating these steps, the two subsystems can be simultaneously cooled. Our results show that this cooling is robust and effective, irrespective of the chosen quantum systems connected to the qubit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.