Abstract

We have temporally characterized, dispersion compensated and carrier-envelope phase stabilized 1.4-cycle pulses (3.2 fs) with 160 µJ of energy at 722 nm using a minimal and convenient dispersion-scan setup. The setup is all inline, does not require interferometric beamsplitting, and uses components available in most laser laboratories. Broadband minimization of third-order dispersion using propagation in water enabled reducing the compressed pulse duration from 3.8 to 3.2 fs with the same set of chirped mirrors. Carrier-envelope phase stabilization of the octave-spanning pulses was also performed by the dispersion-scan setup. This unprecedentedly simple and reliable approach provides reproducible CEP-stabilized pulses in the single-cycle regime for applications such as CEP-sensitive spectroscopy and isolated attosecond pulse generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.