Abstract

We develop a switched predictor-feedback law, which achieves global asymptotic stabilization of linear systems with input delay and with the plant and actuator states available only in (almost) quantized form. The control design relies on a quantized version of the nominal predictor-feedback law for linear systems, in which quantized measurements of the plant and actuator states enter the predictor state formula. A switching strategy is constructed to dynamically adjust the tunable parameter of the quantizer (in a piecewise constant manner), in order to initially increase the range and subsequently decrease the error of the quantizers. The key element in the proof of global asymptotic stability in the supremum norm of the actuator state is derivation of solutions’ estimates combining a backstepping transformation with small-gain and input-to-state stability arguments, for addressing the error due to quantization. We extend this result to the input quantization case and illustrate our theory with a numerical example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.