Abstract
The precise characterization of ultrashort laser pulses has been of interest to the scientific community for many years. Frequency-resolved optical gating (FROG) has been extensively used to retrieve the temporal and spectral field distributions of ultrashort laser pulses. In this work, we exploit the high, broad-band nonlinear optical response of a WS2 monolayer to simultaneously characterize two ultrashort laser pulses with different frequencies. The relaxed phase-matching conditions in a WS2 monolayer enable the simultaneous acquisition of the spectra resulting from both four-wave mixing (FWM) and sum-frequency generation (SFG) nonlinear processes while varying the time delay between the two ultrashort pulses. Next, we introduce an adjusted double-blind FROG algorithm, based on iterative fast Fourier transforms between two FROG traces, to extract the intensity distribution and phase of two ultrashort pulses from the combination of their FWM and SFG FROG traces. Using this algorithm, we find an agreement between the computed and observed FROG traces for both the FWM and SFG processes. Exploiting the broad-band nonlinear response of a WS2 monolayer, we additionally characterize one of the pulses using a second-harmonic generation (SHG) FROG trace to validate the pulse shapes extracted from the combination of the FWM and SFG FROG traces. The retrieved pulse shape from the SHG FROG agrees well with the pulse shape retrieved from our nondegenerate cross-correlation FROG measurement. In addition to the nonlinear parametric processes, we also observe a nonlinearly generated photoluminescence (PL) signal emitted from the WS2 monolayer. Because of its nonlinear origin, the PL signal can also be used to obtain complementary autocorrelation and cross-correlation traces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.