Abstract

We demonstrate a vector magnetometer that simultaneously measures all Cartesian components of a dynamic magnetic field using an ensemble of nitrogen-vacancy (NV) centers in a single-crystal diamond. Optical NV-diamond measurements provide high-sensitivity, broadband magnetometry under ambient or extreme physical conditions; and the fixed crystallographic axes inherent to this solid-state system enable vector sensing free from heading errors. In the present device, multi-channel lock-in detection extracts the magnetic-field-dependent spin resonance shifts of NVs oriented along all four tetrahedral diamond axes from the optical signal measured on a single detector. The sensor operates from near DC up to a $12.5$ kHz measurement bandwidth; and simultaneously achieves $\sim\!50$ pT/$\sqrt{\text{Hz}}$ magnetic field sensitivity for each Cartesian component, which is to date the highest demonstrated sensitivity of a full vector magnetometer employing solid-state spins. Compared to optimized devices interrogating the four NV orientations sequentially, the simultaneous vector magnetometer enables a $4\times$ measurement speedup. This technique can be extended to pulsed-type sensing protocols and parallel wide-field magnetic imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call