Abstract

Backscatter and attenuation variations are essential contrast mechanisms in ultrasound B-mode imaging. Emerging quantitative ultrasound methods extract and display absolute values of these tissue properties. However, in clinical applications, backscatter and attenuation parameters sometimes are not easily measured because of tissues inhomogeneities above the region-of-interest (ROI). We describe a least squares method (LSM) that fits the echo signal power spectra from a ROI to a three-parameter tissue model that simultaneously yields estimates of attenuation losses and backscatter coefficients. To test the method, tissue-mimicking phantoms with backscatter and attenuation contrast as well as uniform phantoms were scanned with linear array transducers on a Siemens S2000. Attenuation and backscatter coefficients estimated by the LSM were compared with those derived using a reference phantom method ( Yao et al. 1990). Results show that the LSM yields effective attenuation coefficients for uniform phantoms comparable to values derived using the reference phantom method. For layered phantoms exhibiting nonuniform backscatter, the LSM resulted in smaller attenuation estimation errors than the reference phantom method. Backscatter coefficients derived using the LSM were in excellent agreement with values obtained from laboratory measurements on test samples and with theory. The LSM is more immune to depth-dependent backscatter changes than commonly used reference phantom methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.