Abstract

Clinical analysis of breast ultrasound imaging is done qualitatively, facilitated with the ultrasound breast imaging-reporting and data system (US BI-RADS) lexicon, which helps to standardize imaging assessments. Two descriptors in that lexicon, "posterior acoustic features" and the "echo pattern" within a mass, are directly related to quantitative ultrasound (QUS) parameters, namely, ultrasound attenuation and the average backscatter coefficient (BSC). The purpose of this study was to quantify ultrasound attenuation and backscatter in breast masses and to investigate these QUS properties as potential differential diagnostic markers. Radio frequency (RF) echo signals were from patients with breast masses during a special ultrasound imaging session prior to core biopsy. Data were also obtained from a well characterized phantom using identical system settings. Masses include 14 fibroadenomas and 10 carcinomas. Attenuation for the acoustic path lying proximal to the tumor was estimated offline using a least squares method with constraints. BSCs were estimated using a reference phantom method (RPM). The attenuation coefficient within each mass was assessed using both the RPM and a hybrid method, and effective scatterer diameters (ESDs) were estimated using a Gaussian form factor model. Attenuation estimates obtained with the RPM were consistent with estimates done using the hybrid method in all cases except for two masses. The mean slope of the attenuation coefficient versus frequency for carcinomas was 20% greater than the mean slope value for the fibroadenomas. The product of the attenuation coefficient and anteroposterior dimension of the mass was computed to estimate the total attenuation for each mass. That value correlated well with the BI-RADS assessment of "posterior acoustic features" judged qualitatively from gray scale images. Nearly all masses were described as "hypoechoic," so no strong statements could be made about the correlation of echo pattern findings in BI-RADS with the averaged BSC values. However, most carcinomas exhibited lower values for the frequency-average BSC than fibroadenomas. The mean ESD alone did not differentiate the mass type, but fibroadenomas had greater variability in ESDs within the ROI than that found for invasive ductal carcinomas. This study demonstrates the potential to use attenuation and QUS parameters associated with the BSC as quantitative descriptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call