Abstract

The application of intravehicular robotic assistants (IRA) can save valuable working hours for astronauts in space stations. There are various types of IRA, such as an accompanying drone working in microgravity and a dexterous humanoid robot for collaborative operations. In either case, the ability to navigate and work along with human astronauts lays the foundation for their deployment. To address this problem, this paper proposes the framework of simultaneous astronaut accompanying and visual navigation. The framework contains a customized astronaut detector, an intravehicular navigation system, and a probabilistic model for astronaut visual tracking and motion prediction. The customized detector is designed to be lightweight and has achieved superior performance (AP@0.5 of 99.36%) for astronaut detection in diverse postures and orientations during intravehicular activities. A map-based visual navigation method is proposed for accurate and 6DoF localization (1~2 cm, 0.5°) in semi-structured environments. To ensure the robustness of navigation in dynamic scenes, feature points within the detected bounding boxes are filtered out. The probabilistic model is formulated based on the map-based navigation system and the customized astronaut detector. Both trajectory correlation and geometric similarity clues are incorporated into the model for stable visual tracking and trajectory estimation of the astronaut. The overall framework enables the robotic assistant to track and distinguish the served astronaut efficiently during intravehicular activities and to provide foresighted service while in locomotion. The overall performance and superiority of the proposed framework are verified through extensive ground experiments in a space-station mockup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.