Abstract

Seawater flue gas desulfurization (SFGD) has shown great effectiveness in the controlling of sulfur dioxide (SO2) emission and the removing of mercury (Hg) from flue gases of coal-fired power plants. Some problems pertaining to SFGD for Hg control, however, remain to be solved: (1) environmental impact from the discharge of Hg-containing seawater to the ocean, and (2) re-emission of gaseous Hg from the aeration tank to the atmosphere. This study synthesizes the copper/sulfur co-impregnated activated carbon (Cu–S-AC) to simultaneously capture aqueous Hg(II) and inhibit gaseous Hg0 re-emission from actual SFGD wastewater. Cu–S-AC exhibited greater Hg(II) adsorption than both raw activated carbon (AC) and sulfur-impregnated activated carbon (S-AC) at an initial Hg(II) concentration of higher than 8000 ng/L. The Hg(II) adsorption of Cu–S-AC was slightly greater at pH 7 and 8 than that under acidic conditions. The Hg(II) adsorption was well-fitted with both linear and Freundlich isotherms. The results of thermodynamic analyses veiled the endothermic and spontaneous adsorption of Hg(II) on Cu–S-AC. In addition, the pseudo-second-order equation provided the best correlation coefficient for the Hg(II) adsorption on Cu–S-AC. Notably, the increases of pH and temperature increased the Hg0 re-emission. Nevertheless, Cu–S-AC addition significantly inhibited the Hg0 re-emission (92%) from SFGD wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.