Abstract

In this paper, we define a new sequence of linear positive operators of integral type to approximate functions in the space,. First, we study the basic convergence theorem in simultaneous approximation and then study Voronovskaja-type asymptotic formula. Then, we estimate an error occurs by this approximation in the terms of the modulus of continuity. Next, we give numerical examples to approximate three test functions in the space by the sequence. Finally, we compare the results with the classical sequence of Szãsz operators  on the interval . It turns out that, the sequence  gives better than the results of the sequence  for the two test functions using in the numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.