Abstract

In this work, a simple, high-throughput, and sensitive analytical method based on surface-enhanced Raman spectroscopy (SERS) and principal component analysis (PCA) was fabricated for simultaneous and rapid determination of three polychlorinated phenols (PCPs) including 2,4-dichlorophenol (2,4-DCP), 2,4,5-trichlorophenol (2,4,5-TCP), and 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP). The aggregated Ag nanoparticles (AgNPs) induced by inorganic salt ions were used as sensitive SERS substrate, and the electromagnetic field distribution of AgNPs with different distances was simulated by finite difference time domain (FDTD) to verify the theory feasibility. The high throughput and rapid detection can be achieved by commercial 96-pore plate. Under the optimum conditions, the linear relationship between the Raman intensity and the concentrations of PCPs was established with satisfied correlation coefficient. The limits of detection (LOD) for 2,4-DCP, 2,4,5-TCP, and 2,3,4,6-TeCP are 0.27mg L-1, 0.09mg L-1, and 0.10mg L-1 by rules of 3σ, respectively. The simultaneous quantitative analysis can be achieved thanks to the independent Raman characteristic peaks of three PCPs. Afterwards, the PCA method was used to eliminate the limitations of overlapping of characteristic Raman peaks in structural analogues of 2,4-DCP, 2,4,5-TCP, and 2,3,4,6-TeCP. The recovery experiments including single PCPs and mixed PCP samples show satisfied recoveries ranging from 85.0 to 113.9% and 80.4 to 114.0% with RSDs in range of 0.4-9.5% and 1.1-10.7%, respectively. The proposed method shows great potentials in rapid, high-throughput, and sensitive monitoring of the contaminants in water and pesticide samples with similar structure. Here, we introduced aggregated Ag nanoparticles (AgNPs) induced by inorganic salt ion for simultaneous, rapid, and sensitive determination of polychlorinated phenols (PCPs) including 2,4-dichlorophenol (2,4-DCP), 2,4,5-trichlorophenol (2,4,5-TCP), and 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) by surface-enhanced Raman spectroscopy (SERS) combined with principal component analysis (PCA). The AgNPs induced by inorganic salt ions were used as sensitive SERS substrate, and the electromagnetic field distribution of AgNPs with different distances was simulated by finite difference time domain (FDTD) to verify the theory feasibility. The PCA method was used to eliminate the limitations of overlapping of characteristic Raman peaks in structural analogues of 2,4-DCP, 2,4,5-TCP, and 2,3,4,6-TeCP. The proposed method shows great potentials in rapid, high-throughput, and sensitive monitoring of the contaminants in water and pesticide samples with similar structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.